Bibliografia publikacji pracowników
Państwowej Szkoły Wyższej w Białej Podlaskiej
Baza tworzona przez Bibliotekę Akademii Bialskiej im. Jana Pawła II.
Zapytanie:
ADAPTIVE TRAINING STEP
Liczba odnalezionych rekordów: 2
Przejście do opcji zmiany formatu | Wyświetl/ukryj etykiety | Wyświetlenie wyników w wersji do druku | Pobranie pliku do edytora | Nowe wyszukiwanie
2/2
Nr opisu:
Autorzy: , K 003 Institute of Electrical and Electronics Engineers Inc. 003Adaptive Learning Rate for Unsupervised Learning of Deep Neural Networks2023 International Joint Conference on Neural Networks (IJCNN) Proceedings, 18-23 June 2023, Gold Coast, AustraliaP. 1-6[Piscataway]978-1-6654-8867-92022/202310.1109/IJCNN54540.2023.10191642Chodyka, Martaadaptive training stepIn this paper an approach for adaptive learning step calculation using ReLU transfer function in neural network is proposed. This adaptive learning rate aims to automatically choose the step size that minimizes the objective function of neural network. We give a theoretical justification for the proposed adaptive learning rate approach, which is based on the steepest descent method. The main contribution of this paper is a novel technique for adaptive learning rate calculation, if we use ReLU transfer function. The experiments in data compression datasets show that proposed approach provides better generalization capability (test set accuracy) and permits to choose the learning rate automatically.Lichograj, Piotrdeep learningunsupervised learning.
Miejsce wydania: 003Adaptive Learning Rate for Unsupervised Learning of Deep Neural Networks2023 International Joint Conference on Neural
Wydawca: K003
Rok wydania: 2023-09-14, 13:18
Strony zajęte przez pracę:
Charakterystyka formalna:
Charakterystyka wg MNiSW:
Wskaźnik Impact Factor ISI: twork is proposed. This adaptive learning rate aims to automatically choose the step size that minimizes the objective function of neural network. We give a theoretical justification for the proposed adaptive learning rate approach, which is based on the steepest descent method. The main contribution of this paper is a novel technique for adaptive learning rate calculation, if we use ReLU transfer function. The experiments in data compression datasets show that proposed approach provides better generalization capability (test set accuracy) and permits to choose the learning rate automatically.^aLichograj, Piotr^cy^adeep learning^aunsupervised learning
Słowa kluczowe ang.: ;
Wyświetl ponownie stosując format:
Wyświetl/ukryj etykiety
| Wyświetlenie wyników w wersji do druku
| Pobranie pliku do edytora
| Nowe wyszukiwanie
| Biblioteka AB